中電網移動|移動中電網
 
 
中電網移動|移動中電網|高清图滚动区

深入剖析電感電流

簡介

在開關電源的設計中電感的設計爲工程師帶來的許多的挑戰。工程師不僅要選擇電感值,還要考慮電感可承受的電流,繞線電阻,機械尺寸等等。本文專注于解釋:電感上的DC電流效應。這也會爲選擇合適的電感提供必要的信息。

理解電感的功能

電感常常被理解爲開關電源輸出端中的LC濾波電路中的L(C是其中的輸出電容)。雖然這樣理解是正確的,但是爲了理解電感的設計就必須更深入的了解電感的行爲。

在降壓轉換中(Fairchild典型的開關控制器),電感的一端是連接到DC輸出電壓。另一端通過開關頻率切換連接到輸入電壓或GND。

在状态1过程中,电感会通过(高边 “high-side”)MOSFET连接到输入电压。在状态2过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通过 二极管接地或通过(低边“low-side”)MOSFET接地。如果是后一种方式,转换器就称为“同步(synchronus)”方式。

现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输 入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必 然为正端,因此会在电感上形成负向的压降。

我們利用電感上電壓計算公式:

V=L(dI/dt)

因此,當電感上的電壓爲正時(狀態1),電感上的電流就會增加;當電感上的電壓爲負時(狀態2),電感上的電流就會減小。通過電感的電流如圖2所示:

通過上圖我們可以看到,流過電感的最大電流爲DC電流加開關峰峰電流的一半。上圖也稱爲紋波電流。根據上述的公式,我們可以計算出峰值電流:

其中,ton是狀態1的時間,T是開關周期(開關頻率的倒數),DC爲狀態1的占空比。

警告:上面的計算是假設各元器件(MOSFET上的導通壓降,電感的導通壓降或異步電路中肖特基二極管的正向壓降)上的壓降對比輸入和輸出電壓是可以忽略的。

如果,器件的下降不可忽略,就要用下列公式作精確計算:

同步轉換電路:

異步轉換電路:

其中,Rs为感应电阻阻抗加电感绕线电阻的阻。Vf 是肖特基二极管的正向压降。R是Rs加MOSFET导通电阻,R=Rs+Rm。

電感磁芯的飽和度 

通过已经计算的电感峰值电流,我们可以发现电感上产生了什么。很容易会知道,随着通过电感的电流增加,它的电感量会减小。这是由于磁芯材料的物理特性决 定的。电感量会减少多少就很重要了:如果电感量减小很多,转换器就不会正常工作了。当通过电感的电流大到电感实效的程度,此时的电流称为“饱和电流”。这 也是电感的基本参数。

实际上,转换电路中的开关功率电感总会有一个“软”饱和度。要了解这个概念可以观察实际测量的电感Vs DC电流的曲线:

當電流增加到一定程度後,電感量就不會急劇下降了,這就稱爲“軟”飽和特性。如果電流再增加,電感就會損壞了。

注意:电感量下降在很多类的电感中都会存在。例如:toroids,gapped E-cores等。但是,rod core电感就不会有这种变化。

有了这个软饱和的特性,我们就可以知道在所有的转换器中为什么都会规定在DC输出电流下的最小电感量;而且由于纹波电流的变化也不会严重影响电感量。在 所有的应用中都希望纹波电流尽量的小,因为它会影响输出电压的纹波。这也就是为什么大家总是很关心DC输出电流下的电感量,而会在Spec中忽略纹波电流 下的电感量。

猜你喜歡
中電網移動|移動中電網|频道导航区